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Evolution of Leaky Modes on Printed-Circuit Lines
Francisco Mesa, Member, IEEE, David R. Jackson, Fellow, IEEE, and Manuel J Freire

Abstract—The frequency evolution of dominant (quasi-TEM)
and higher order modes on an open printed-circuit structure such
as a microstrip is examined. Three different mode types are consid-
ered, including bound modes (BMs), leaky modes that leak into the
surface wave of the background structure, and leaky modes that
also leak into space. One of the fundamental goals is to establish
the conditions under which one type of mode can transition into
another type as the frequency changes. One important conclusion
is that the dominant BM can never transition into a leaky mode
for a microstrip structure with an isotropic substrate, but such a
transition is possible for an anisotropic substrate, observed origi-
nally by Tsuji et al.and Shigesawaet al.However, higher order BMs
can directly transition into leaky modes, as shown by Oliner and
Michalski and Zheng. On other structures such as coplanar strips,
where the bound dominant mode exhibits odd symmetry, a transi-
tion from a bound dominant mode to a leaky mode is possible, as
shown by Shigesawaet al.and Tsjui et al.. In addition to examining
the mathematical transitions that are possible, the physical contin-
uation of modes is also investigated, by examining the frequency
evolution of the currents excited by a practical source. It is con-
cluded that there may be physical continuity between modes, even
if there is no mathematical continuity.

Index Terms—Leaky modes, microstrip lines, spectral-domain
techniques.

I. INTRODUCTION

T HE presence of leaky modes in the electromagnetic spec-
trum of printed-circuit lines has motivated a lot of work

focused on examining their properties [1]–[28]. From early on,
leaky modes were recognized as being responsible for undesir-
able radiation and crosstalk in guiding structures. In general,
leaky modes on printed-circuit lines can be divided in two types:
surface-wave leaky modes (SFWLMs) and space-wave leaky
modes (SPWLMs). The SFWLMs are those modes that leak
power in the form of surface waves on the background waveg-
uiding structure (usually the surface wave) as they prop-
agate. SPWLMs leak power into free space in addition to that
into the surface waves. As is explained in [11], [15], [17], and
[26], the above two different mechanisms of power leakage are
reflected in the spectral domain analysis (SDA) of the leaky
modes by the use of different integration paths in the trans-
verse wavenumber plane that detour around different singular-
ities of the spectral dyadic Green’s function (SDGF). Specifi-
cally, the integration contour of an SFWLM detours only around
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the poles of the SDGF that are associated with the wavenumbers
of the background waveguide modes into which leakage takes
places. For an SPWLM, the integration path detours also around
the branch points of the SDGF associated with the free-space
wavenumber. A bound mode (BM) is computed using an inte-
gration path that does not detour around any singularities of the
SDGF, namely, the integration path runs along the complete real
axis.

Depending on the structure, it has been observed in the past
that leaky modes can coexist with the dominant and higher order
BMs of the structure [14], [17] or a leaky mode can be the
dominant quasi-TEM mode of the structure [19], [21]. Due to
the simultaneous presence of BMs and different types of leaky
modes, many researchers have studied the modal behavior for
various structures and the relations and connections between the
different types of modes as frequency (or some other structural
parameter) changes. Thus, it has been found that the dominant
BM of a microstrip line never becomes leaky [6], except when
the substrate has anisotropic characteristics [12]. However, for
higher order modes on a microstrip, transitions from a BM to an
SFWLM do occur, and behave similarly to the situation when a
BM transitions to a leaky mode in a simple dielectric-slab wave-
guide [30], involving the so-called spectral gap region [14], [16].
For other structures, such as coplanar strips and coplanar wave-
guide, the BM may transition into a leaky mode in a similar
way [14], [7]. In all cases, a direct transition from a bound to an
SPWLM has never been observed. Another transition that has
never been reported is an SFWLM evolving into an SPWLM.

Almost all the above investigations were carried out using nu-
merical solutions to the dispersion equations of the printed-cir-
cuit line, which provides accurate solutions, but does not pro-
vide a fundamental understanding of why certain transition are
possible and others are not. The aim of this paper is to study the
possible transitions of bound and leaky modes on printed-cir-
cuit lines with the purpose of explaining the evolution and pos-
sible transitions of these modes. It will be clarified what con-
ditions allow for possible transitions between one type of mode
and another (i.e., necessary conditions for these transitions). The
methodology used in this investigation is based on the insight
provided by the Riemann surface defined in the complex lon-
gitudinal wavenumber plane that is associated with the solution
of a printed-circuit line with a practical source excitation. This
plane has proved to be a very useful tool for exploring and un-
derstanding what transitions are possible for the modes on an
infinite line, as well as allowing for a convenient numerical so-
lution to the currents and fields due to a practical source excita-
tion.

Section II presents a brief overview of the SDA when ap-
plied to both a two-dimensional (2-D) analysis of an infinite
printed-circuit line and a three-dimensional (3-D) analysis of
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Fig. 1. Microstrip on an isotropic and lossless substrate excited by a delta-gap
voltage source.

the line when excited by a source. This theory is used in Sec-
tion III to explain the conditions under which various types of
transitions from one mode to another may take place. Numer-
ical results for dispersion behavior on a microstrip line are pre-
sented to illustrate the conclusions. Section IV will present nu-
merical results to illustrate another important point, namely, that
the lack of mathematical continuation between modes does not
necessarily means the absence of a possible physical continuity.
For example, the most prominent leaky mode that is physically
present on a microstrip line due to a practical source excitation
may change from an SFWLM to an SPWLM as the frequency
changes, even though there is no mathematical connection be-
tween these two modes.

II. A NALYSIS

The SDA has proven to be one of the most efficient and
fruitful techniques to study the dispersion characteristics of
printed-circuit lines [4], [11], [13], [15], [16], [17], [19]. As is
explained in the literature, the Galerkin method in conjunction
with the Parseval’s theorem can be used to pose the dispersion
relation of an infinite printed-circuit line (e.g., the microstrip
line shown in Fig. 1) as the zeros of the following equation:

(1)

where is the Fourier transform of the basis function
used to expand the longitudinal current density on the strip con-
ductor as

(2)

The term is the component of the SDGF, and
is an appropriate integration path in the complex-plane to

allow for an inverse Fourier transform of nonuniformly conver-
gent functions [31], [32]. (In the derivation of (1), only one basis
function was used for simplicity; the use of more basis functions
does not affect the general conclusions discussed below). The
SDGF has the following singularities on the-plane.

1) Branch points at , with being
the free-space wavenumber.These branch points define a
two-sheeted Riemann surface in the-plane. Using the
Sommerfeld choice for defining the corresponding branch
cuts, , the two sheets
correspond to the vertical wavenumber being proper
(imaginary part negative) and improper (imaginary part
positive).

2) A finite set of poles on the proper sheet at
, where is the square of

Fig. 2. Possible integration pathsC . The integration paths all lie on the proper
sheet of thek branch points, except for the grey part of theC path, which lies
on the improper sheet.

the wavenumber of the above cutoff proper modes
(surface waves) of the background waveguide.

3) An infinite set of poles on the improper sheet at

, where is the square of the
wavenumber of the real and complex improper modes of
the background waveguide.

For a fixed frequency, the function is not uniquely
defined because of the many possible differentintegration
paths that can be used to carry out the integral in (1). The
different paths come from the different singularities of the
SDGF that can be detoured around. It is well known that a
BM solution comes from using the real-axis path of integration
in (1). For complex leaky-mode solutions, an integration path
detouring around only the proper (surface-wave) poles of the
SDGF is associated with an SFWLM solution. If the path also
detours around the branch points, passing through the branch
cuts and, therefore, lying partly on the lower Riemann sheet,
the path will be associated with an SPWLM solution. The three
different types of paths are shown in Fig. 2. For convenience,
the three different types of path will be denoted as for
the real-axis path (BM solution), for the path that detours
around only the SDGF poles (SFWLM solution), and for
the path that also passes around the branch points (SPWLM
solution).

The nonuniqueness in the choice of the integration paths in
the -plane causes the function to be multivalued. In
particular, branch points appear in the-plane. A location on
a particular sheet in the -plane corresponds to a particular
choice of integration path in the -plane in (1). An under-
standing of the geometry of the complex-plane is central to
the later discussion on the types of modal transitions that are
allowed. The -plane also provides insight into when leaky
modes are physically significant, in the sense that the mode ap-
pears to a significant degree in the current spectrum excited by
a practical source.

The complex -plane for printed-circuit structures such as
microstrip is examined in detail in [28]. It is concluded there
that the following types of branch points exist in the-plane:

1) logarithmic (infinite-sheeted) branch points at ;
2) square-root-type (two-sheeted) branch points at

located on the even sheets with respect
to the branch point;

3) square-root-type branch points at located on
the odd sheets with respect to thebranch point.

The third type of branch point will be ignored here since it is not
relevant for this discussion. Assuming one surface-wave mode
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Fig. 3. Singularities appearing in thek complex plane. The branch cuts
associated with the branch points atk andk are shown, along with a BM
pole and two leaky-mode poles. The path of integration used in the solution of
the current excitation by a delta-gap source is also shown.

(the mode) above cutoff, and using Sommerfeld hyper-
bolic branch cuts, the branch cuts in the-plane are as shown
in Fig. 3.

The use of different integration paths in the-plane provides
for the possibility of many possible mathematical leaky-mode
solutions, corresponding to wavenumbersthat appear on dif-
ferent sheets of the branch points in the-plane. However, only
a few of them will have physical significance. This question was
extensively treated in [27] and [28], where it was shown that
a pure 2-D analysis cannot satisfactorily answer this point. In
those papers, a leaky mode was considered physically signif-
icant provided that its associated current appears in the spec-
trum of the total current excited by a realistic source on
the line. Assuming that a delta-gap voltage source is feeding the
line (with an impressed field ), the solution to the corre-
sponding electric-field integral equation (EFIE) in the spectral
domain makes it possible to express the total current as the fol-
lowing inverse Fourier transform [28]:

(3)

The path of integration in the -plane is shown in Fig. 3. The
path stays on the zero sheet of thebranch point and the top
sheet of the branch point. By definition, this is equivalent
to a real-axis path in the -plane. The denominator of the in-
tegrand in the above equation is precisely the function
defined in (1), thus, the branch points and poles of the integrand
come from the branch points and roots of . This causes the
spectrum of the total current produced by the source to be clearly
dependent of the singularities in the complex-plane. In par-
ticular, pole singularities of the integrand, corresponding to the
roots of the function , determine the discrete spectrum
of guided modes launched on the line by the delta-gap source.
The residues of the integrand at the pole singularities determine
the launching amplitudes of the guided modes, both bound and
leaky. A BM pole with a real propagation wavenumber (on the
real -axis), and two typical complex leaky-mode poles are
shown in Fig. 3.

Not all of the pole singularities are expected to be physically
significant, in that the corresponding guided mode appears in the
spectral representation of the current produced by the source.
It was shown in [28] that a path consistency condition (PCC)
must be met in order for a leaky-wave solution to be physically
significant. The PCC provides a systematic criterion to deter-
mine if a mathematical solution to the dispersion equation of
the infinite structure is expected to be physically excited by a
practical source. To summarize, the PCC states that, in order

for a leaky mode to be physical, the value of the phase constant
obtained by using a certain path of integration must be

consistentwith the path. For example, the leaky-mode solution
corresponding to the pole in Fig. 3 has a phase constant
that is between and . This solution will, therefore, only
be physical if it arises from an integration path in the-plane
of the type , meaning that it is an SFWLM type of solution.
This is also equivalent to saying that the pole lies on the
zero sheet of the branch point and the lower sheet of the

branch point. Similarly, the leaky mode associated with
has a phase constantless than and, hence, it will be

physical provided that its corresponding integration path in the
-plane is , meaning that it is an SPWLM type of solution.

Equivalently, the pole is located on the lower (1) sheet of the
branch point.

III. CONTINUITY OF SOLUTIONS FROM DIFFERENTPATHS

In the study of the dispersion relations for printed-circuit
lines, it is usually found that different mathematical leaky-wave
solutions are physically meaningful only within certain
frequency ranges. This raises the question of the possible
mathematical and physical continuity between the different
leaky-wave solutions as frequency (or some other parameter)
changes. The issue of mathematical continuity of different
modes can be conveniently explored by tracking the loci of the
corresponding propagation constants along the different sheets
of the complex plane. In Section II, it was shown that the
different types of solutions to (1) are located on different sheets.
Thus, one solution can be the continuation of other type of
solution only if the solution crosses the corresponding branch
cut. Based on this consideration, some possible transitions will
be studied next. Specifically, some of the questions that will be
examined are under what conditions a bound dominant mode
or higher order BM can ever evolve into an SFWLM type of
leaky mode, and if an SFWLM type of leaky mode can ever
evolve into an SPWLM type of leaky mode.

A. Transition From BM Solutions to Surface-Wave Leaky
Solutions

Since the solutions from path do not leak in any form,
these solutions will be evidently associated with the dominant
and higher order BM solutions. In the past, different behaviors
have been observed for BM solutions. The dominant mode of an
isotropic microstrip line has never been observed to evolve to an
SFWLM [6] (i.e., it never becomes leaky), although such an evo-
lution has been observed for a microstrip line on an anisotropic
substrate [8]. Dominant BMs on other structures with isotropic
substrates, such as coplanar strips and coplanar waveguides,
have been found to evolve into an SFWLM type of solution [7],
[11], [14], [18]. In a lossless structure the BMs have real propa-
gation constants greater than the wavenumber of the sur-
face-wave mode of the background waveguide. Hence, if a BM
solution transitions into a leaky-mode solution, it must evolve
into the leaky solution by first passing through the rightmost
branch point located (the branch point) in Fig. 3 to reach
one of the bottom sheets. The criterion for which this is possible
will be discussed momentarily.
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Fig. 4. Plots of the normalized phase constants (�=k ) for theEH ,EH , and
EH modes of a microstrip line on an isotropic substrate withh = 0:635mm,
w = 3 mm, and� = 9:8. TheTM surface wave of the grounded dielectric
slab is also shown.

Fig. 5. Detailed plot of the normalized phase constants showing the transition
for theEH mode in Fig. 4. TheC (BM) solution turns into a real improper
C (surface-wave leaky) solution prior to merging with another real improper
solution to give rise to a complexC solution. AC solution, which is not the
mathematical continuation of the boundEH mode, is also shown in this figure.

The evolution of the bound solutions for the dominant
and first two higher order modes, i.e., the , and
modes, of a microstrip line with an isotropic substrate is shown
in Fig. 4. It is observed in this figure that the dominant
solution never crosses the dispersion curve to become an
SFWLM, whereas the and bound higher order modes
do cross the dispersion curve (at 13.5 and 28 GHz, respec-
tively), and evolve into SFWLM solutions at lower frequencies.
Specifically, the bound solutions first make a transition to a real
improper SFWLM solution, arising from path , which meets
another real improper SFWLM solution to then give rise to a
complex (leaky) SFWLM solution. This behavior is shown in
Fig. 5 for the mode (which has a longitudinal current dis-
tribution that is an odd function). The phase constant of
the leaky SFWLM solution goes below that of the
surface wave at about 14.18 GHz to become a physically sig-
nificant leaky mode. This figure also shows that it is possible
to find a leaky solution by using path . Such a solution
leaks into both space and the surface wave, and becomes
physically significant below about 14.115 GHz, where the curve
crosses the unity line ( ). This solution is not a math-
ematical continuation of the solution (this has been checked
carefully), although the curve approaches closely to the
curve at about 14.2 GHz. The solution is plotted up to a fre-
quency of about 14.2 GHz, at which point numerical difficulties
were encountered due to the close proximity of thesolution

Fig. 6. Detailed plot of the transition for theEH mode shown in Fig. 4. The
C (BM) solution turns into a real improperC (surface-wave leaky) solution
prior to merging with an other real improper solution to give rise to a complex
C solution.

Fig. 7. Detailed plot of the of the normalized phase constants showing the
transition for theEH BM studied in [8, Fig. 2(a)]. TheC (BM) solution turns
into a real improperC (surface-wave leaky) solution that meets another real
improper solution to give rise to a complexC solution.

to the wavenumber of the surface-wave mode (this causes
the pole in the -plane to approach the origin and, hence,
the path of integration).

Similarly, Fig. 6 shows how the solution for the mode
[which has an even current distribution ] also evolves to
a real improper solution that merges to other similar solu-
tion to produce a complex SFWLM solution. Thus, it has been
found that both odd and even higher order BMs on a microstrip
line with an isotropic substrate make a transition to SFWLM
solutions following the same spectral-gap pattern previously re-
ported for other structures [14], [30].

Unlike what is found for the dominant mode of an isotropic
microstrip, Tsuji, Shigesawa, and Oliner were the first to report
an interesting evolution of the dominant boundsolution into
a mode that leaks into only the surface wave for a mi-
crostrip with an anisotropic substrate [8], [12]. This transition
appeared in [8, Fig. 2(a)], which shows how the dominant mi-
crostrip mode dispersion curve touches the surface-wave
curve (which previously had crossed the surface-wave
mode at a certain frequency) and turns into an SFWLM solution.
Reproduced here, Fig. 7 shows how the transition of the BM to
the SFWLM solution is made through a spectral gap that is sim-
ilar to that observed for the higher order modes on an isotropic
substrate in Figs. 5 and 6, except that the frequency trend is re-
versed; leakage occurs at a higher frequency in Fig. 7.
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It is important to point out that the transition from the bound
to the SFWLM solution for the anisotropic substrate is possible
because the dispersion curve rises above the one. It
has never been observed that bound dominant modes on mi-
crostrip evolve into SFWLM solutions after crossing the
dispersion curve. The following proposition rules out this pos-
sibility.

Proposition : For printed-circuit lines on an isotropic sub-
strate, the to transition ( ) can only
occur when the total current on the strip approaches zero as

.
Note that, unlike a higher order mode, the quasi-TEM dom-

inant BM on microstrip never has a zero total strip current.
Hence, the above proposition indicates that the bound domi-
nant mode on microstrip with an isotropic substrate can never
transition into an SFWLM, but must remain independent from
the leaky modes. Higher order modes on microstrip may transi-
tion into SFWLMs (as has already been demonstrated) because
they have zero total current. (Odd higher order modes always
have zero total current. Even higher order modes may have total
zero current, as will be demonstrated later.) Furthermore, the
bound dominant mode on structures such as coplanar strips and
coplanar waveguides may transition into an SFWLM since such
structures support an odd dominant mode with zero total strip
current (the sum of the currents on all the conductors is zero).

In order to establish the above proposition, it is first noted
that a transition from a BM to an SFWLM requires that

for some frequency, namely, the dispersion curve of the
printed-circuit line must touch the dispersion curve of the
mode. It is assumed that the surface current on the strip con-
ductor is represented as shown in (2). The longitudinal
electric field at produced by this current density on an in-
finite line can be expressed as

(4)

Assuming that for a BM, the integration path is
deformed to one running along the branch cut of the SDGF in
the lower half of the -plane (for ) (see Fig. 8) to give
the following expression for the electric field

(5)

where

(6)

accounts for the electric field associated with leakage into the
surface wave of the background structure, and is

the location in the -plane of the pole of the SDGF associated
with the surface wave.

As the propagation wavenumber of the BM on the struc-
ture approaches the dispersion curve of the surface wave,
the wavenumber approaches the branch point in the

-plane, ). In this limit, . Now taking

Fig. 8. Deformation of the originalC (BM) integration path in thek -plane
to one residue path around thek pole plus a path detouring around the
lowerk branch cut. In this figure, it has been assumed thatk > k (the
pole is then on the imaginary axis).

into account (22), given in the Appendix, the residue of in
(6) behaves in this limit as

(7)

and, therefore,

(8)

Thus, the electric field associated with the leakage into the
surface-wave mode tends to infinity unless is zero. The
total current on the strip may be written as

(9)

Therefore, the condition implies a zero total current
on the strip conductor. Hence, a finite field associated with a
propagation wavenumber is only possible if the
total current on the strip is zero. Consequently, asolution
can evolve into a solution only if the total current is zero at
the frequency for which .

The condition of zero total current is always satisfied for an
odd mode, such as the higher order mode of Fig. 5 for
the single microstrip line or the odd dominant mode on coupled
microstrip lines (coplanar strips). For higher orderevenBMs,
such as the mode, the only possibility of finding a tran-
sition to a surface-leaky solution is when the total current van-
ishes as . It will be verified next that the transition
of the mode shown in Fig. 6 is, in fact, possible because

as . After expanding the trans-
verse profile of the longitudinal current, , in terms of
Chebyshev polynomials weighted by a square-root edge singu-
larity term, Fig. 9 shows the solution for the normalized total
current computed by means of a 2-D SDA for the mode
on the microstrip analyzed in Fig. 6. It can be seen that the
total current tends to zero as the propagation constant of this
mode approaches the wavenumber of the surface wave of
the background waveguide. This fact is then consistent with the
transition from the solution to the real improper solution
shown in Fig. 6.
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Fig. 9. Plot of the normalized current on the strip conductor versus frequency
for theEH mode analyzed in Fig. 6.

There still remains the question of how it is possible to have
a transition from the BM solution to the SFWLM solution
for the microstrip with an anisotropic substrate, as studied in [8].
Following the same rationale as above, the electric field
of the guided mode associated with the surface wave of the
background waveguide (the leakage field) is given by

(10)

Making use of (23), given in the Appendix, the above residue
is found to be proportional to the location of the surface-wave
pole in the transverse wavenumber plane (rather than inversely
proportional to it as before) so that

(11)

as . Hence,

(12)

Thus, as ( ), it is found that .
Therefore, a transition of the type is possible even if

. This justifies that the dominant BM of a microstrip
line can make a transition to an SFWLM solution provided that
the leakage is in the form of the surface wave of the back-
ground waveguide.

B. Transition From BM Solutions to Space-Leaky Solutions

A direct transition from a BM to a mode that leaks into both
space and the surface wave has never been observed pre-
viously. It has always been observed that the BM first becomes
leaky by evolving into an SFWLM. An explanation of this gen-
eral property can be given by considering the behavior of the
solutions in the complex -plane.

If a BM solution were to evolve directly into an SPWLM so-
lution, the BM pole on the real axis would have to pass through
the branch point at , and continue along the real axis to
the branch point at , before crossing the branch cut associ-
ated with the branch point. Such a hypothetical trajectory is
shown as path (1) in Fig. 10. If this were possible, there would
be a finite region of the real -axis, , where
the wavenumber is real and, therefore, there is no leakage into

Fig. 10. Hypothetical trajectories showing: (1) aC (BM) solution making
a transition to aC (space and surface-wave leaky) solution and (2) aC

(surface-wave leaky) solution making a transition to aC solution.

the surface wave. From (6), it appears that this is only pos-
sible if

for (13)

which implies that

for (14)

This means that there is a finite region of the-axis for which
the transform of the transverse profile function is identically
zero. If it is assumed that the transverse profile function
has a transform that is an analytic function everywhere in the
complex plane, then it must be identically zero. This follows
from the property that a function that is analytic everywhere and
zero on a finite length contour must be identically zero. Most
common basis functions have this analytic property and, hence,
the conclusion is expected to hold in most practical situations.

If the current of a BM is zero (such as for an odd dominant
mode on coplanar strips or an odd higher order mode on a mi-
crostrip), the condition is satisfied and, therefore,
(14) may be satisfied in an approximate sense provided that

. In this case, there may be an approximate conti-
nuity between the and the solutions. This is, for example,
the case found for the transition of the mode analyzed in
[6, Fig. 4] and [9, Fig. 2]. Nevertheless, the curves presented
for the microstrip analyzed in Fig. 5 show that the solution
for the mode continues to an improper real solution
that meets another improper real solution, at which point a
complex SFWLM solution then begins. This figure shows that
a leaky solution appears to begin close to the point where
the bound mode evolves into one of the real improper

modes. However, as mentioned previously, it has been care-
fully checked that there is not anymathematicalconnection be-
tween the and solutions, although this fact does not ex-
clude a possiblephysicaltransition between the bound () and
SPWLM ( ) solutions.

C. Transition From a Surface-Wave Leaky Solution to a
Space-Wave Leaky Solution

In general, it can also be stated that there cannot be math-
ematical continuity between an SFWLM and an SPWLM so-
lution; i.e., a complex solution cannot turn into a complex

solution. Since the above solutions are located on different
sheets of the Riemann surface, the only possible transition
must be of the form shown as path (2) in Fig. 10. This transition
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requires that the solution emerge from the lower sheet of the
branch point, then passes through (or possibly around) the

branch point, and then crosses the branch cut associated with
the branch point. If the trajectory passes around thebranch
point instead of through it, there will be a frequency region for
which the leaky mode will lie in the upper half of the-plane,
corresponding to a mode that grows in the direction of propaga-
tion, despite the fact that the mode would lie on the zero sheet of
the branch point and the top sheet of the branch point
and, hence, there would be no leakage. Such a mode would vio-
late the conservation of energy. Hence, path (2) in Fig. 10 is the
only allowed hypothetical path of transition. This implies that
the solution has to be purely real (and bound) at . How-
ever, a mode with this propagation wavenumber will leak into
the surface wave unless the condition

(15)

is satisfied. This special condition is not expected to be found in
general, and it certainly is not found when using the common
basis functions for the dominant mode on narrow strip
problems. However, the condition may be approximately true
for an odd mode such as the mode for the case .
Hence, for an odd mode, there may be an approximate conti-
nuity between the and solutions, but not an exact conti-
nuity.

Despite the lack of an mathematical continuity found between
the dominant and solutions, there could still be aphys-
ical continuity between these two leaky-wave solutions. Thus,
it may happen that when a solution losses itsphysicalsig-
nificance by entering the region , a solution with

may take over to continue the physical leakage
of power. In this case, the nature of the leakage would change
from leakage in the form of space and surface waves to leakage
in the form of surface wave only. Results presented in Section IV
will verify that this is indeed possible.

IV. NUMERICAL RESULTS

One of the most interesting points discussed in Section III
was the fact that there is no mathematical continuity between
the different leaky-mode solutions, although there may be a
possible physical continuity between these modes. This point
will now be numerically studied using the dispersion relations
shown in Fig. 11 for a microstrip line with an isotropic substrate.
Fig. 11(a) and (b) shows the normalized phase and attenuation
constants of the bound dominant mode, a SFWLM so-
lution, and a SPWLM solution. It is observed that the BM
never becomes leaky (as expected from the discussion in Sec-
tion III) and that the two leaky modes are two completely in-
dependent solutions that are never connected (also as expected
from the discussion in Section III). According to the PCC dis-
cussed previously, the SFWLM solution can be physically
significant in two frequencies ranges, where :
between 13 and 14 GHz and above 18 GHz. TheSPWLM
solution can be physically significant where , namely,
between 14.8 and 18 GHz.

(a)

(b)

Fig. 11. Plots of the normalized phase constants for theC (BM) solution, the
C (surface-wave leaky) solution, and theC (space and surface-wave leaky)
solution for a microstrip line on an isotropic substrate withw = 4 mm,h =

1:27 mm, and� = 10:2.

In order to study the physical significance of the different
leaky-mode solutions and, hence, study any possible physical
transition between them, the problem of current excitation from
a 1-V delta-gap source will be used as the analysis tool, fol-
lowing the method in [27]. A study of the current excited from
the source provides good physical insight into the nature of the
excited modes and gives a clear indication of the qualitative and
quantitative significance of the different modes. Specifically, the
correlation between the current of a leaky mode, as defined by
the corresponding residue in the complex-plane (see Fig. 3),
and the actual current on the line excited by the source is used
to define the extent of the physical relevance of the leaky mode.
To make the assessment of physical significance quantitative,
a numerical modal decomposition of the line current is
obtained by application of the generalized pencil of matrices
(GPOF) method [33] to . The degree of correlation between
the amplitude and propagation wavenumber of a leaky mode (as
defined by the corresponding residue) and the amplitude and
wavenumber provided by the GPOF fit to the current data de-
termines the degree of physical significance of the leaky mode.
The GPOF values have been obtained using 400 sampling points
over the plotted range of current in the figures, with the preci-
sion parameter set to3 [33]. If the amplitude or wavenumber
of some of the GPOF waves vary considerably as the GPOF pa-
rameters change, this indicates that these waves do not really
model physical guided modes on the line. Whenever this situ-
ation occurs, the corresponding amplitude of the GPOF wave
will be denoted by (-,-).

At 13.3 GHz, it can be seen in Fig. 11(a) that thesolution
is physical according to the PCC. To ascertain if this leaky-mode
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Fig. 12. Magnitude of the total current as well as the BM and the
continuous-spectrum currents at 13.3 GHz for the structure analyzed in Fig. 11.
The table shows the comparison between the GPOF and theoretical (residue)
results for the modal decomposition at this frequency.

solution is really present to a significant extent on the line, a plot
of the different currents is shown in Fig. 12, and the GPOF re-
sults are presented in the table immediately below the plot. The
total current on the line is plotted, along with the current of the
BM and continuous spectrum (the leaky modes are part of the
continuous-spectrum current [29]). At this frequency, it is seen
that the continuous-spectrum current is very weak, meaning that
no leaky modes are excited to any significant degree, despite the
fact that the leaky mode is a physical mode.

The table of Fig. 12 show excellent agreement between the
residue results (theory) and the GPOF results for both the am-
plitude and wavenumber of the BM, as expected, since the BM is
always physical, and is also excited quite strongly here. For the

leaky mode, there is reasonable agreement in the normalized
phase constant (1.0872 versus 1.0805), but not in the attenuation
constant (0.2460 versus 0.0655). Furthermore, the complex am-
plitude of the leaky mode predicted from the residue (3.8447,

0.4041) does not agree at all with that from the corresponding
GPOF wave ( 0.3516, 0.6982). Hence, it is concluded that
this leaky mode is not appreciably present on the line at this fre-
quency, in spite of the fact that it is a physical mode in the sense
of satisfying the PCC (the phase constant at this frequency is in
the range ). Part of the reason for this is the fact
that the attenuation constant of the leaky mode is very high at
13.3 GHz, as seen in Fig. 11(b). Hence, this mode has a negli-
gible value over most of the sampling region of the line, making
it difficult for the GPOF method to accurately reconstruct this
mode.

A similar situation (not shown here) was also found at
15 GHz. At this frequency, the leaky mode that is physical
according to the PCC is the mode instead of the mode,
which is clearly nonphysical at this frequency since it has
a phase constant that is less than. The large attenuation
constant of the leaky mode [see Fig. 11(b)] causes this
mode be significant only in a region very close to the source.

Fig. 13. Magnitude of the total current as well as the current of the BM+ leaky
mode, and the “residual-wave” current at 16.7 GHz for the structure analyzed
in Fig. 11. The table shows the comparison between the GPOF and theoretical
(residue) results for the modal decomposition at this frequency.

From the phase constants shown in the dispersion diagram
of Fig. 11(a), it would be expected that the mode would be
physically significant between 13–14 GHz, and thesolution
would be physically significant after about 14.4 GHz. However,
because of the high attenuation constants at these frequencies,
neither of the leaky modes are physically significant, except per-
haps in a region very close to the source.

The situation changes at 17 GHz, where, according to
Fig. 11(a) and (b), the leaky-mode solution satisfies the
PCC and also has a small attenuation constant. This fact is
reflected in Fig. 13, which shows that the sum of the BM and
the leaky-mode current accounts almost entirely for the
total current on the line. The results of the table included with
this figure corroborate that the modal spectrum mainly consists
of the BM and one leaky mode. The good correlation
between the results of the GPOF fit and the theoretical (residue)
values for the leaky mode points out the high degree of
physical significance of this leaky mode. The absence of the

leaky mode in the total current confirms the lack of physical
significance of this mode at this frequency.

The plots and table of Fig. 14 show the situation at 19 GHz,
where only the leaky mode is expected to be physical ac-
cording to the PCC. Both the plots and results of the table of
Fig. 14 show that the leaky mode is significant at this fre-
quency.

Thus, although there is no mathematical continuity between
the (SPWLM) solution and the (SFWLM) solution in
the dispersion plot of Fig. 11, there exists a physical continuity
for the leakage of power in the sense that, as the frequency in-
creases from 16.7 to 19 GHz, the leaky mode that is physically
present on the line changes from theto mode. This phys-
ical transition is expected based on the fact that thesolution
loses physical validity while the solution gains physical va-
lidity as the frequency increases over the range indicated. The
nature of the physical continuity between different leaky-mode
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Fig. 14. Magnitude of the total current as well as the current of the BM+ leaky
mode, and the “residual-wave” current at 19 GHz for the structure analyzed in
Fig. 11. The table shows the comparison between the GPOF and theoretical
(residue) results for the modal decomposition at this frequency.

solutions will, in general, be dependent on the particular type of
structure and the source excitation.

V. CONCLUSIONS

The evolution and allowable transitions of leaky modes on
printed-circuit lines has been studied. A theory has been devel-
oped to understand the different possible mathematical transi-
tions from a BM to a leaky mode, or from one type of leaky
mode to another. Although most of the discussion and all of the
results have been focused on a microstrip line, it is expected that
the conclusion that were reached are general. These conclusions
explain many of the modal transitions that have been observed
on printed-circuit lines in the literature. A summary of the spe-
cific conclusions is listed below. References are also given to
indicate where a particular type of modal transition has been
observed.

1) The dominant (quasi-TEM) BM never becomes a leaky
mode for a microstrip line on an isotropic substrate [24].

2) The dominant (quasi-TEM) BM may transition to a leaky
mode on those structures where the current has odd sym-
metry (e.g., coplanar strips or coplanar waveguides) [7],
[12], [14], [16].

3) Higher order modes on microstrip line may transition into
leaky modes. All modes with odd current symmetry may
make this transition [6], [9], [26]. Even modes may also
make the transition, provided that the total current van-
ishes as the wavenumber approaches that of the
mode (Fig. 6).

4) For a microstrip line on ananisotropicsubstrate, the dom-
inant BM can transition into a leaky mode, which then
leaks in the form of the surface wave of the back-
ground waveguide [8], [12].

5) When a BM transitions into a leaky mode, the leaky mode
must be of the type where leakage occurs into only the

surface wave of the background waveguide [12], [26], not
of the type where leakage also occurs into space. A direct
transition from a BM to a space-leaky mode is not pos-
sible.

6) A transition from an SFWLM to a mode that leaks into
both space and the surface wave is not possible. The two
types of leaky modes always remain separate solutions.

Although no mathematical continuation can exist between
different types of leaky-mode solutions, as mentioned in 6),
there may exist a physical continuation between the leaky
modes. That is, one type of leaky mode may lose physical
significance and disappear from the total current on the line
that is excited by a practical source, while another type of
leaky mode may become significant to take its place. Hence,
there may be a physical continuation in the leakage of power
as frequency changes, although the two types of modes remain
separate solutions that are not mathematically connected. This
behavior has been demonstrated by showing numerical results
for the current on a microstrip line excited by a delta-gap
source.

APPENDIX

For an isotropic substrate, the component of the SDGF can
be written as [34]

(16)

where

(17)

(18)

and , with .
The values of making and zero are precisely

the wavenumbers of the and modes of the background
waveguide (surface waves), respectively. It can be seen that
when tends to one of these wavenumbers, (where super-
script represents either or ), can be approximated
by the pole behavior in the horizontal wavenumber () plane as

(19)

where, for convenience, the factor ( ) has been included in
the numerator so that the residue at is simply the ap-
propriate constant . In the transverse wavenumber () plane,
the approximation can be written as

(20)
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The residue of the term in the -plane can then easily be
found to be

(21)

As and, therefore, , the
residue in the -plane approaches infinity. In particular, from
(21) and (16), it is seen that the residue approaches

(22)

In the TE case, as and, therefore,
, the residue in the -plane approaches zero because of the

extra term in (16). In this case, the residue approaches

(23)
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